ATTACHMENT C.3

GRID ANALYSIS – CHANGES IN OBJECTIVE FLOW VS. CHANGES IN FLOOD STORAGE

FIGURES - SACRAMENTO RIVER BASIN

Figure C.3-1	Shasta Dam and Reservoir
Figure C.3-2	Black Butte Dam and Reservoir
Figure C.3-3	Oroville Dam and Reservoir
Figure C.3-4	New Bullards Bar Dam and Reservoir

FIGURES - SAN JOAQUIN RIVER BASIN

Figure C.3-5	Pine Flat Dam and Reservoir
Figure C.3-6	Friant Dam and Reservoir
Figure C.3-7	Hidden Dam and Reservoir
Figure C.3-8	Buchanan Dam and Reservoir
Figure C.3-9	New Exchequer Dam and Reservoir
Figure C.3-10	Don Pedro Dam and Reservoir
Figure C.3-11	New Melones Dam and Reservoir

THIS PAGE LEFT BLANK INTENTIONALLY

Shasta Objective Flow vs. Flood Storage

- 1. Data representing the 50% and 10% chance exceedence events are not plotted because Shasta is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 3. Current objective flow = 79,000 cfs
- 4. Current maximum flood control storage = 1,300 TAF

Black Butte Objective Flow vs. Flood Storage

- 1. Data representing the 50% chance exceedence events is not plotted because Black Butte is capable of completely detaining inflows generated by events of this magnitude.
- 2. Data representing the 0.5% and 0.2% chance exceedence events is not plotted because Black Butte is incapable of completely detaining inflows generated by events of these magnitudes.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 15,000 cfs
- 5. Current maximum flood storage = 136 TAF

Sacramento & San Joaquin River Basins	
Comprehensive Study	
Figure C.3-2 Grid Analysis Results Black Butte Dam and Reservoir	
US Army Corps of Engineers The Reclamation Board, State of California December 2002	
The registration board, state of Camornia December 2002	_

Oroville Objective Flow vs. Flood Storage

- 1. Data representing the 50%, 10%, 4%, and 2% chance exceedence events is not plotted because Oroville is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Data representing the 0.2% chance exceedence event is not plotted because Oroville is incapable of completely detaining inflows generated by events of this magnitude.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 150,000 cfs
- 5. Current maximum flood storage = 750 TAF

New Bullards Objective Flow vs. Flood Storage

Objective Flow (cfs)

Notes:

- 1. Data representing the 50%, 10%, and 4% chance exceedence events is not plotted because New Bullards is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Data representing the 0.2% chance exceedence event is not plotted because New Bullards is incapable of completely detaining inflows generated by events of this magnitude.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 50,000 cfs
- 5. Current maximum flood storage = 170 TAF

Sacramento & San Joaquin River Basins
Comprehensive Study

Figure C.3-4
Grid Analysis Results
New Bullards Dam and Reservoir

US Army Corps of Engineers
The Reclamation Board, State of California December 2002

Pine Flat Objective Flow vs. Flood Storage

- 1. Data representing the 50%, 10%, and 4% chance exceedence events is not plotted because Pine Flat is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Data representing the 0.2% chance exceedence event is not plotted because Pine Flat is incapable of completely detaining inflows generated by events of this magnitude.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 4,950 cfs
- 5. Current maximum flood storage = 475 TAF

Friant Objective Flow vs. Flood Storage

- 1. Data representing the 50% and 10% chance exceedence events is not plotted because Friant is capable of completely detaining inflows generated by events of this magnitude.
- 2. Data representing the 0.5% and 0.2% chance exceedence events is not plotted because Friant is incapable of completely detaining inflows generated by events of these magnitudes.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 8,000 cfs
- 5. Current maximum flood storage = 170 TAF

Sacramento & San Joaquin River Basins	
Comprehensive Study	
Figure C.3-6 Grid Analysis Results Friant Dam and Reservoir	
US Army Corps of Engineers	
The Reclamation Board, State of California December 2002	

Hidden Objective Flow vs. Flood Storage

- 1. Data representing the 50%, 10%, and 4% chance exceedence events is not plotted because Hidden Dam is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Data representing the 0.2% chance exceedence event is not plotted because Hidden Dam is incapable of completely detaining inflows generated by events of this magnitude.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 5,000 cfs
- 5. Current maximum flood storage = 65 TAF

Buchanan Objective Flow vs. Flood Storage

Notes:

- 1. Data representing the 50% and 10% chance exceedence events is not plotted because Buchanan is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 3. Current objective release = 7,000 cfs
- 4. Current maximum flood storage = 45 TAF

Sacramento & San Joaquin River Basins
Comprehensive Study

Figure C.3-8
Grid Analysis Results
Buchanan Dam and Reservoir

US Army Corps of Engineers
The Reclamation Board, State of California December 2002

New Exchequer Objective Flow vs. Flood Storage

Objective Flow (cfs)

Notes:

- 1. Data representing the 50%, 10%, and 4% chance exceedence events is not plotted because New Exchequer is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Data for the 0.2% chance exceedence event is not plotted because New Exchequer is incapable of completely detaining inflows generated by events of this magnitude.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 6,000 cfs
- 5. Current maximum flood storage = 350 TAF

Sacramento & San Joaquin River Basins
Comprehensive Study

Figure C.3-9
Grid Analysis Results
New Exchequer Dam and Reservoir

US Army Corps of Engineers
The Reclamation Board, State of California December 2002

Don Pedro Objective Flow vs. Flood Storage

Objective Flow (cfs)

Notes:

- 1. Data representing the 50% and 10% chance exceedence events are not plotted because Don Pedro is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Data representing the 0.5% and 0.2% chance exceedence events are not plotted because Don Pedro is incapable of completely detaining inflows generated by events of these magnitudes.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 9,000 cfs
- 5. Current maximum flood storage = 340 TAF

Sacramento & San Joaquin River Basins
Comprehensive Study

Figure C.3-10
Grid Analysis Results
Don Pedro Dam and Reservoir

US Army Corps of Engineers
The Reclamation Board, State of California December 2002

New Melones Objective Flow vs. Flood Storage

Notes:

- 1. Data representing the 50%, 10%, and 4% chance exceedence events is not plotted because New Melones is capable of completely detaining inflows generated by events of these magnitudes.
- 2. Data representing the 0.2% chance exceedence event is not plotted because New Melones is incapable of completely detaining inflows generated by events of this magnitude.
- 3. Points above a curve indicate objective flows have been exceeded and values below a curve indicate objective flows have not been exceeded for a particular event.
- 4. Current objective flow = 8,000 cfs
- 5. Current maximum flood storage = 450 TAF

Sacramento & San Joaquin River Basins
Comprehensive Study

Figure C.3-11
Grid Analysis Results
New Melones Dam and Reservoir

US Army Corps of Engineers
The Reclamation Board, State of California December 2002